

Dispersal mediated invasion patterns of *Prunus serotina* at different spatial scales

> Kris Verheyen, Bart Deckers, Margot Vanhellemont & Martin Hermy

Introduction

- Until the 1950's, Black Cherry (*Prunus serotina*) was deliberately introduced, particularly in understories of pine plantations on poor sandy soils.
- Since then, this species has spread spontaneously and it is currently one of the **most frequently** regenerating woody species in Flanders.
- At this moment, **large-scaled and costly programs** have been established to control the species
- However, surprisingly little information is available about the ecological factors that determine *Prunus serotina* invasion patterns and processes !?

Aims

- On a regional scale, to quantify the relative importance of the factors determining the distribution of *Prunus serotina*
- On a landscape scale, to document the pattern and processes of *Prunus serotina* invasion

Regional scale

The Flemish Forest Inventory

3074 regularly distributed plots on a 1 km x 0.5 km grid *Prunus serotina* present in ~ **30%** of the plots

Plot selection

Prunus serotina predictor variables

- Local scale variables:
 - Forest age (De Keersmaeker et al. 2001): <1775, 1775-1850, 1850-1930, >1930
 - Soil (Belgian Soil Map)
 - Texture: Sand, Sandy loam, Loam, Clay (Peat excluded)
 - Moisture: Dry, Moist, Wet
 - Type: Luvisol, Podzol, Anthrosol, Inceptisol
 - Stand structure (FFI):
 - Basal Area Canopy (circ. > 22 cm; m²/ha)
 - % Basal Area consisting of light-demanding species
 - % Basal Area consisting of coniferous species
- Landscape scale variable (Forest Map of Flanders):
 - Area forest within 500m radius (ha)
- Socio-economic variable (FFI):
 - Ownership: private vs. public
- Location variables (FFI):
 - X, Y, XY, X², Y², X³, Y³, X²Y, XY²

Factors determining *Prunus* serotina presence

 $R^{2}_{Nagelkerke} = 0.33$ and 70% correct prediction of validation data-set

Prunus serotina presence in the Kempen ecoregion

More homogeneous site conditions:

Soil \downarrow ?

Region with most widespread introductions:

Location \downarrow ?

Flanders vs. Kempen

41% frequency in Kempen and $R^2_{Nagelkerke} = 0.29$

Sorbus aucuparia presence in Flanders

Native species with more or less similar ecology : Location \downarrow ?

Prunus serotina vs. Sorbus aucuparia

27% Sorbus aucuparia frequency and $R^2_{Nagelkerke} = 0.15$

First conclusions

- Highest chances to encounter *Prunus serotina* in privately owned forest of recent origin which are located on dry, coarse textured Podzols and have a not too open canopy consisting of light demanding species.
- However, the present-day distribution patterns are still to a large extent determined by the locations of past introductions!
 - The regional distribution of *Prunus serotina* is dispersal limited and hence, not all potential sites have been occupied yet

Landscape scale

Study area

- Agricultural landscape in Meerhout (~ 250 ha)
- Dominant land-uses are grassland and corn
- Dense hedgerow network:
 - 511 hedgerows
 - total length of 36 km
- Partially invaded by *Prunus serotina* (~33 %)

Data collection

- Localization all *Prunus serotina* individuals within hedgerow network and height and circumference measurements
- Age determination on subset of 100 individuals
- Quantification of fruit production for a random selection of 31 Prunus serotina individuals
- Frugivore observations on a subset of 12 large, wellobservable seed trees, with individual observation sessions lasting one hour (~150 hours of observation)

Age structure of the *Prunus* serotina population

- 2962 *Prunus serotina* individuals in total
- Preponderance of young individuals:
 - 40% seedlings
 - 35% saplings
 - 10% non-reproducing adults
 - 15% reproducing adults

Evidence for an expanding population?

Invasion patterns

Invasion started in ~1970 and is proceeding at an increasing rate

Invasion process: seed production

- Mean seed production of 7814 berries / tree (0 – 53048)
- Strong, non-linear relationship between crop and tree size

90% reduction of seed availability by elimination of all individuals > 20 cm circ. !

Invasion process: dispersal vectors

Woodpigeon and Blackbird responsible for, respectively, 56.4 % and 29.0 % all seeds dispersed

Invasion process: seed rain and recruitment

- Distance dependant distribution patterns of seeds and seedlings
- Association of seeds and seedlings with roost trees and hedgerow intersections

Second conclusions

 Prunus serotina population is still expanding at an increasing rate

 Abundantly produced seeds are mainly dispersed by two (common) vectors whose behaviour is strongly influenced by landscape structure

Management implications

Implications for management

 Unless widespread introduction and efficient dispersal, present-day distribution of *Prunus serotina* still dispersallimited at both regional and landscape scale. Hence, many more sites risk to be invaded by this species.

• Need for:

- (1) A regionally coordinated approach in which the limited resources are invested in landscapes where the invasion process is still ongoing.
- (2) Landscape-level control programmes that focus on all sites (public and private) and eliminate the larger trees (> 20 cm circ.) in the first place.